Thursday, October 27, 2016

Bewegende gemiddelde lyn r

Voeg, te verander, of te verwyder 'n tendenslyn in 'n grafiek inligting oor vooruitskatting en wys tendense in kaarte trendlines word gebruik om grafies tendense in data voor te stel en te help probleme van voorspelling analiseer. Sulke analise is ook aangewys regressieanalise. Deur die gebruik van regressie-analise, kan jy 'n tendenslyn te brei in 'n grafiek as die werklike data om toekomstige waardes te voorspel. Byvoorbeeld, die volgende grafiek gebruik 'n eenvoudige lineêre tendenslyn wat voorspel twee kwartale voor 'n neiging in die rigting verhoging van inkomste toon duidelik. Wenke Jy kan ook 'n bewegende gemiddelde, wat glad uit skommelinge in data en toon die patroon of meer duidelik tendens skep. As jy 'n grafiek of data-reeks te verander sodat dit nie meer die verband tendenslyn kan ondersteun byvoorbeeld deur die verandering van die grafiek om 'n 3-D grafiek of deur die verandering van die lig van 'n PivotChart verslag of geassosieerde spilastabelverslag verslag die tendenslyn nie meer verskyn op die grafiek. Vir line data sonder 'n grafiek, kan jy gebruik outo-of een van die statistiese funksies, soos groei () of TREND (), om data vir die beste-pas lineêre of eksponensiële lyne te skep. Die keuse van die regte tendenslyn tipe vir jou data wanneer jy 'n tendenslyn te voeg tot 'n grafiek in Microsoft Office Excel, kan jy kies enige een van hierdie ses verskillende tendens of regressie tipes: lineêre trendlines, logaritmiese trendlines, polinoom trendlines, mag trendlines, eksponensiële trendlines, of bewegende gemiddelde trendlines. Die tipe data wat jy besluit watter tipe tendenslyn wat jy moet gebruik. A tendenslyn is mees akkurate wanneer sy R-kwadraat-waarde is by of naby 1. As jy 'n tendenslyn te pas om jou data, Excel bereken outomaties die R-kwadraat-waarde. As jy wil, kan jy hierdie waarde op jou grafiek vertoon. Lineêre trendlines 'n Lineêre tendenslyn is 'n beste-pas reguit lyn wat gebruik word met 'n eenvoudige lineêre datastelle. Jou data is lineêr as die patroon in sy datapunte 'n lyn lyk. 'N Lineêre tendenslyn toon gewoonlik dat daar iets is aan die toeneem of afneem teen 'n bestendige tempo. In die volgende voorbeeld, 'n lineêre tendenslyn illustreer dat yskas verkope konsekwent gestyg oor 'n tydperk van 13 jaar. Let daarop dat die R-kwadraat-waarde is 0,979, wat is 'n goeie passing van die lyn om die data. Logaritmiese trendlines n logaritmiese tendenslyn is 'n beste-pas geboë lyn wat gebruik word wanneer die tempo van verandering in die data toeneem of afneem vinnig en dan vlakke uit. 'N Logaritmiese tendenslyn kan beide negatiewe en positiewe waardes te gebruik. Die volgende voorbeeld gebruik van 'n logaritmiese tendenslyn te voorspel bevolkingsgroei van diere te illustreer in 'n vaste-ruimte gebied, waar die bevolking gelyk het as ruimte vir die diere afgeneem. Let daarop dat die R-kwadraat-waarde is 0,933, wat is 'n relatief goeie passing van die lyn om die data. Polinoom trendlines n polinoom tendenslyn is 'n geboë lyn wat gebruik word wanneer data skommel. Dit is nuttig, byvoorbeeld, vir die ontleding van winste en verliese oor 'n groot datastel. Die einde van die polinoom kan bepaal word deur die aantal skommelinge in die data of deur hoeveel draaie (heuwels en dale) verskyn in die kurwe. 'N Orde 2 polinoom tendenslyn het oor die algemeen net een koppie of vallei. Bestel 3 het oor die algemeen een of twee heuwels of dale. Bestel 4 het oor die algemeen tot drie heuwels of dale. Die volgende voorbeeld toon 'n Orde 2 polinoom tendenslyn (een koppie) om die verhouding tussen bestuur spoed en brandstofverbruik te illustreer. Let daarop dat die R-kwadraat-waarde is 0,979, wat is 'n goeie passing van die lyn om die data. Power trendlines n krag tendenslyn is 'n geboë lyn wat gebruik word met datastelle wat metings wat verhoog teen 'n spesifieke koers byvoorbeeld vergelyk, die versnelling van 'n renmotor met tussenposes 1 sekonde. Jy kan nie 'n krag tendenslyn as jou data bevat nul of negatiewe waardes. In die volgende voorbeeld word versnelling data getoon deur die plot afstand in meter deur sekondes. Die krag tendenslyn toon duidelik die toenemende versnelling. Let daarop dat die R-kwadraat-waarde is 0,986, wat is 'n byna perfekte pas van die lyn om die data. Eksponensiële trendlines 'n eksponensiële tendenslyn is 'n geboë lyn wat gebruik word wanneer data waardes styg of val by voortdurend die verhoging van belasting. Jy kan 'n eksponensiële tendenslyn skep as jou data bevat nul of negatiewe waardes. In die volgende voorbeeld word 'n eksponensiële tendenslyn wat gebruik word om die dalende hoeveelheid koolstof 14 illustreer in 'n voorwerp soos dit eeue. Let daarop dat die R-kwadraat-waarde is 0,990, wat beteken dat die lyn pas die data byna perfek. Bewegende gemiddelde trendlines n bewegende gemiddelde tendenslyn stryk uit skommelinge in die data om 'n patroon te wys of meer duidelik tendens. 'N bewegende gemiddelde gebruik van 'n spesifieke aantal datapunte (deur die opsie tydperk te stel), gemiddeldes, en maak gebruik van die gemiddelde waarde as 'n punt in die lyn. Byvoorbeeld, as Tydperk is ingestel op 2, die gemiddelde van die eerste twee datapunte word gebruik as die eerste punt in die bewegende gemiddelde tendenslyn. Die gemiddelde van die tweede en derde datapunte gebruik word as die tweede punt in die tendenslyn, ens .. In die volgende voorbeeld, 'n bewegende gemiddelde tendenslyn toon 'n patroon in die aantal huise wat verkoop meer as 'n 26-week periode. Voeg 'n tendenslyn Op 'n unstacked, 2-D, area, bar, kolom, lyn, voorraad, xy (strooi), of borrelkaart, kliek op die data reeks waaraan jy 'n tendenslyn of bewegende gemiddelde voeg, of doen die volgende om die data reeks uit 'n lys van grafiek elemente kies: Klik op enige plek in die grafiek. Dit vertoon die Chart tools. toevoeging van die ontwerp. Uitleg. en formaat oortjies. Op die blad Formaat, in die huidige seleksie groep, kliek op die pyltjie langs die boks Chart elemente en klik op die grafiek element wat jy wil. Let wel: As jy 'n grafiek wat meer as een datareeks het sonder die keuse van 'n data-reeks te kies, Excel vertoon die dialoog Trendline Voeg boks. In die lys boks, kliek op die data-reeks wat jy wil en klik op OK. Op die blad uitleg, in die analise groep, kliek Trendline. Doen een van die volgende: Klik op 'n vooraf gedefinieerde tendenslyn opsie wat jy wil gebruik. Let wel: Dit geld 'n tendenslyn sonder sodat jy spesifieke opsies te kies. Klik Meer Trendline Options. en dan in die kategorie Trendline Options, onder Trend / Regressie Tipe. Klik op die tipe tendenslyn wat jy wil use. I het 'n plot van tydreekse in ggplot2 pakket en ek het die Moving gemiddelde presteer en ek wil graag die resultaat van bewegende gemiddelde om die plot van tydreekse by te voeg. Voorbeeld van data-stel (P31): ambtemp dt -1,14 2007-09-29 00:01:57 -1,12 2007-09-29 00:03:57 -1,33 2007-09-29 00:05:57 -1,44 2007 -09-29 00:07:57 -1,54 2007-09-29 00:09:57 -1,29 2007-09-29 00:11:57 Toegepaste kode vir tydreekse aanbieding: Voorbeeld van Moving gemiddelde plot Voorbeeld van verwagte resultate Die uitdaging is dat tydreeksdata ovbtained van data-stel wat tyd tempel en temperatuur maar Moving gemiddelde data sluit sluit net die gemiddelde kolom en nie die tyd tempel en pas hierdie twee kan inconsistency. Moving gemiddeldes in R na die beste van my wete, R doen veroorsaak nie 'n ingeboude funksie om bewegende gemiddeldes te bereken. Die gebruik van die filter funksie, maar ons kan 'n kort funksie te skryf vir bewegende gemiddeldes: Ons kan dan gebruik maak van die funksie op enige data: MAV (data), of MAV (data, 11) as ons wil 'n verskillende aantal datapunte spesifiseer as die standaard 5 plot werke soos verwag: plot (MAV (data)). Benewens die aantal datapunte waaroor om gemiddelde, kan ons ook die kante argument van die filter funksies te verander: sides2 gebruik beide kante, sides1 gebruik net verlede waardes. Deel hierdie: Post navigasie Kommentaar navigasie Kommentaar navigationMoving Gemiddeldes: Wat is dit vir die mees gewilde tegniese aanwysers, bewegende gemiddeldes word gebruik om die rigting van die huidige tendens meet. Elke tipe bewegende gemiddelde (algemeen in hierdie handleiding as MA geskryf) is 'n wiskundige gevolg dat word bereken deur die gemiddeld van 'n aantal van die verlede datapunte. Sodra bepaal, die gevolglike gemiddelde is dan geplot op 'n grafiek, sodat die handelaars om te kyk na reëlmatige data eerder as om te fokus op die dag-tot-dag prysskommelings wat inherent in alle finansiële markte is. Die eenvoudigste vorm van 'n bewegende gemiddelde, gepas bekend as 'n eenvoudige bewegende gemiddelde (SMA), word bereken deur die rekenkundige gemiddelde van 'n gegewe stel waardes. Byvoorbeeld, 'n basiese 10-dae - bewegende gemiddelde wat jy wil voeg tot die sluiting pryse van die afgelope 10 dae en dan verdeel die gevolg van 10. In Figuur 1 te bereken, die som van die pryse vir die afgelope 10 dae (110) is gedeel deur die aantal dae (10) om te kom op die 10-dae gemiddelde. As 'n handelaar wil graag 'n 50-dag gemiddelde sien in plaas daarvan, sal dieselfde tipe berekening gemaak word, maar dit sal die pryse sluit oor die afgelope 50 dae. Die gevolglike gemiddelde hieronder (11) in ag neem die afgelope 10 datapunte om handelaars 'n idee van hoe 'n bate relatiewe is geprys om die afgelope 10 dae te gee. Miskien is jy wonder hoekom tegniese handelaars noem hierdie hulpmiddel 'n bewegende gemiddelde en nie net 'n gewone gemiddelde. Die antwoord is dat as nuwe waardes beskikbaar is, moet die oudste datapunte laat val van die stel en nuwe data punte moet kom om dit te vervang. So, is die datastel voortdurend in beweging om rekenskap te gee nuwe data soos dit beskikbaar raak. Hierdie metode van berekening verseker dat slegs die huidige inligting word verreken. In Figuur 2, sodra die nuwe waarde van 5 word by die stel, die rooi boks (wat die afgelope 10 datapunte) na regs beweeg en die laaste waarde van 15 laat val van die berekening. Omdat die relatief klein waarde van 5 die hoë waarde van 15 vervang, sou jy verwag om die gemiddeld van die datastel afname, wat dit nie sien nie, in hierdie geval van 11 tot 10. Wat Moet Bewegende Gemiddeldes lyk as die waardes van die MA is bereken, hulle geplot op 'n grafiek en dan gekoppel aan 'n bewegende gemiddelde lyn te skep. Hierdie buig lyne is algemeen op die kaarte van tegniese handelaars, maar hoe dit gebruik word kan drasties wissel (meer hieroor later). Soos jy kan sien in Figuur 3, is dit moontlik om meer as een bewegende gemiddelde om enige term voeg deur die aanpassing van die aantal tydperke gebruik word in die berekening. Hierdie buig lyne kan steurende of verwarrend lyk op die eerste, maar jy sal groei gewoond aan hulle soos die tyd gaan aan. Die rooi lyn is eenvoudig die gemiddelde prys oor die afgelope 50 dae, terwyl die blou lyn is die gemiddelde prys oor die afgelope 100 dae. Nou dat jy verstaan ​​wat 'n bewegende gemiddelde is en hoe dit lyk, goed in te voer 'n ander tipe van bewegende gemiddelde en kyk hoe dit verskil van die voorheen genoem eenvoudig bewegende gemiddelde. Die eenvoudige bewegende gemiddelde is uiters gewild onder handelaars, maar soos alle tegniese aanwysers, dit het sy kritici. Baie individue argumenteer dat die nut van die SMA is beperk omdat elke punt in die datareeks dieselfde geweeg, ongeag waar dit voorkom in die ry. Kritici argumenteer dat die mees onlangse data is belangriker as die ouer data en moet 'n groter invloed op die finale uitslag het. In reaksie op hierdie kritiek, handelaars begin om meer gewig te gee aan onlangse data, wat sedertdien gelei tot die uitvinding van die verskillende tipes van nuwe gemiddeldes, die gewildste van wat is die eksponensiële bewegende gemiddelde (EMA). (Vir verdere inligting, sien Basics gelaaide bewegende gemiddeldes en Wat is die verskil tussen 'n SMA en 'n EMO) Eksponensiële bewegende gemiddelde Die eksponensiële bewegende gemiddelde is 'n tipe van bewegende gemiddelde wat meer gewig gee aan onlangse pryse in 'n poging om dit meer ontvanklik maak om nuwe inligting. Leer die ietwat ingewikkeld vergelyking vir die berekening van 'n EMO kan onnodige vir baie handelaars wees, aangesien byna al kartering pakkette doen die berekeninge vir jou. Maar vir jou wiskunde geeks daar buite, hier is die EMO vergelyking: By die gebruik van die formule om die eerste punt van die EMO bereken, kan jy agterkom dat daar geen waarde beskikbaar is om te gebruik as die vorige EMO. Hierdie klein probleem opgelos kan word deur die begin van die berekening van 'n eenvoudige bewegende gemiddelde en die voortsetting van die bogenoemde formule van daar af. Ons het jou voorsien van 'n monster spreadsheet wat die werklike lewe voorbeelde van hoe om beide 'n eenvoudige bewegende gemiddelde en 'n eksponensiële bewegende gemiddelde te bereken sluit. Die verskil tussen die EMO en SMA Nou dat jy 'n beter begrip van hoe die SMA en die EMO bereken word, kan 'n blik op hoe hierdie gemiddeldes verskil. Deur te kyk na die berekening van die EMO, sal jy agterkom dat meer klem gelê op die onlangse data punte, maak dit 'n soort van geweegde gemiddelde. In Figuur 5, die nommers van tydperke wat in elk gemiddeld is identies (15), maar die EMO reageer vinniger by die veranderende pryse. Let op hoe die EMO het 'n hoër waarde as die prys styg, en val vinniger as die SMA wanneer die prys daal. Dit reaksie is die hoofrede waarom so baie handelaars verkies om die EMO gebruik oor die SMA. Wat doen die verskillende dae gemiddelde bewegende gemiddeldes is 'n heeltemal aanpas aanwyser, wat beteken dat die gebruiker vrylik kan kies watter tyd raam wat hulle wil wanneer die skep van die gemiddelde. Die mees algemene tydperke wat in bewegende gemiddeldes is 15, 20, 30, 50, 100 en 200 dae. Hoe korter die tydsduur wat gebruik word om die gemiddelde te skep, hoe meer sensitief sal wees om die prys veranderinge. Hoe langer die tydsverloop, hoe minder sensitief, of meer reëlmatige, die gemiddelde sal wees. Daar is geen regte tyd raam te gebruik wanneer die opstel van jou bewegende gemiddeldes. Die beste manier om uit te vind watter een werk die beste vir jou is om te eksperimenteer met 'n aantal verskillende tydperke totdat jy die een wat jou strategie pas te vind. Bewegende gemiddeldes: Hoe om dit te gebruik Skryf Nuus om te gebruik vir die nuutste insigte en ontleding Dankie vir jou inskrywing om Investopedia insigte - Nuus om Use. Moving Gemiddeld - MA afbreek bewegende gemiddelde - MA As SMA voorbeeld, kyk na 'n sekuriteit met die volgende sluitingsdatum pryse meer as 15 dae: Week 1 (5 dae) 20, 22, 24, 25, 23 Week 2 (5 dae) 26, 28, 26, 29, 27 Week 3 (5 dae) 28, 30, 27, 29 28 A 10-dag MA sou gemiddeld uit die sluitingsdatum pryse vir die eerste 10 dae as die eerste data punt. Die volgende data punt sal daal die vroegste prys, voeg die prys op dag 11 en neem die gemiddelde, en so aan, soos hieronder getoon. Soos voorheen verduidelik, MA lag huidige prys aksie omdat dit gebaseer is op vorige pryse hoe langer die tydperk vir die MA, hoe groter is die lag. So sal 'n 200-dag MA 'n veel groter mate van lag as 'n 20-dag MA het omdat dit pryse vir die afgelope 200 dae bevat. Die lengte van die MA om te gebruik, hang af van die handel doelwitte, met korter MA gebruik vir 'n kort termyn handel en langer termyn MA meer geskik vir 'n lang termyn beleggers. Die 200-dag MA word wyd gevolg deur beleggers en handelaars, met onderbrekings bo en onder hierdie bewegende gemiddelde beskou as belangrike handel seine wees. MA ook mee belangrik handel seine op hul eie, of wanneer twee gemiddeldes kruis. 'N stygende MA dui daarop dat die sekuriteit is in 'n uptrend. terwyl 'n dalende MA dui daarop dat dit in 'n verslechtering neiging. Net so, is opwaartse momentum bevestig met 'n lomp crossover. wat gebeur wanneer 'n korttermyn-MA kruisies bo 'n langer termyn MA. Afwaartse momentum bevestig met 'n lomp crossover, wat plaasvind wanneer 'n kort termyn MA kruisies onder 'n langer termyn MA.


No comments:

Post a Comment